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Online Appendix

A State transitions

The transitions for an auction j that does not close at the end of the current period (i.e., dj(t) > 1)
are as follows.

• If auction j receives no bids in period t, then wj(t + 1) = wj(t), rj(t + 1) = rj(t), and
aj(t+ 1) = aj(t).

• If auction j receives exactly one bid bj from a buyer i with value x in period t, then there are
two possible transitions:

– If bj > wj(t), then wj(t+1) = bj , rj(t+1) = wj(t), and aj(t+1) = x; the displaced
bidder with value aj(t) enters the losers’ pool with probability 1 − α and otherwise
exits.

– If bj ≤ wj(t), then wj(t+ 1) = wj(t), rj(t+ 1) = bj , and aj(t+ 1) = aj(t); buyer i
with value x enters the losers’ pool with probability 1− α and otherwise exits.

• If auction j receives bids from multiple buyers in period t, then there are three possible
transitions. Let bj be the maximum of the bids, submitted by bidder i with value x, and let b′j
denote the second-highest.

– If b′j > wj(t), then wj(t + 1) = bj , rj(t + 1) = b′j , and aj(t + 1) = x; the displaced
bidder with value aj(t) enters the losers’ pool with probability 1 − α and otherwise
exits, as do the buyers other than i.

– If bj > wj(t) ≥ b′j , then wj(t)1) = bj , rj(t + 1) = wj(t), and aj(t + 1) = x; the
displaced bidder with value aj(t) enters the losers’ pool with probability 1 − α and
otherwise exits, as do the buyers other than i.

– If bj ≤ wj(t), then wj(t+ 1) = wj(t), rj(t+ 1) = bj , and aj(t+ 1) = aj(t); each of
the arriving buyers enters the losers’ pool with probability 1− α and otherwise exits.

The transitions for an auction j that closes at the end of the period (i.e., dj(t) = 1) are as follows.

• If auction j receives no bids in period t, then the high bidder with value aj(t) exits.
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• If auction j receives at least one bid, then there are two possible transitions. As above, let bj
be maximum of the bids, submitted by bidder i with value x, and, if there are multiple bids,
let b′j denote the second-highest.

– If b′j > wj(t), then bidder i with value x exits; the displaced bidder with value aj(t)

enters the losers’ pool with probability 1−α and otherwise exits, as do the buyers other
than i.

– If bj ≤ wj(t), then the high bidder with value aj(t) exits; all other bidders enter the
losers’ pool with probability 1− α and otherwise exit.

B Conditional beliefs and ergodicity

In order to show that conditional beliefs at on-path observable states are well-defined, we prove that
a stationary strategy profile induces an ergodic distribution. The first point to note is that Φ(σ) is not
ergodic, because the d(t) component that tracks the number of periods until the next auction closes
is obviously periodic. We aim instead for a result like the following. For each d ∈ {1, . . . , T}, let
{ωd, ωT+d, . . . , ωnT+d, . . .} track the state every time there are d periods left in the next-to-close
auction, and let Φ(σ, d) denote that Markov process. Given state ω, let d(ω) denote the component
that specifies the number of periods remaining in the next-to-close auction. Thus, the state space
of Φ(σ, d) is Ω(d) ≡ {ω ∈ Ω|d(ω) = d} and the n-step-ahead transition function for Φ(σ, d)

is PnT (σ). Proposition B.1 establishes that the Markov process Φ(σ, d) is ergodic—that is, it
converges to a unique invariant distribution, π(σ, d), regardless of the initial state.

Proposition B.1 For any d and any initial state ω0 ∈ Ω(d), there exists a unique invariant distri-
bution π(σ, d) such that the Markov process Φ(σ, d) satisfies

max
ω∈Ω(d)

∣∣PnT ([ω0, ω];σ)− π(ω;σ, d)
∣∣ →n→∞ 0.

Our proof relies on standard results about Markov chains on a countable state space. (See, for
example, Meyn and Tweedie (1993).) It would be sufficient to show that Φ(σ, d) is an irreducible,
recurrent, and aperiodic1 process. In general, Φ(σ, d) may not be irreducible. For example, suppose
that arriving buyers bid only in the soonest-to-close auction. Under such strategies, states in which
later-to-close auctions have already received bids never occur. However, we can first show that

1A Markov process is irreducible if every state can be reached from every other state; it is recurrent if in expectation
each state is visited infinitely often; and it is aperiodic if there is a state that transitions in one step to itself with positive
probability.
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Φ(σ, d) has a single absorbing communicating class ΩC(σ, d).2 Second, we show that the Markov
chain confined to that class, ΦC (σ, d), is ergodic. The proposition follows.

The following lemma immediately implies that Φ(σ, d) has a unique absorbing communicating
class.

Lemma B.1 State (0,∅,0,0, d) is recurrent under Φ (σ, d).

Proof. We will show that starting from any state, the process reaches the empty state (0,∅,0,0, d),
where there are no active buyers and no bids in any open auction, with probability 1. Consider the
total number of buyers in the losers’ pool, n(t). The probability that such a buyer reenters over the
next T periods (the length of an auction) is 1 − (1− γ△)T . The expected number of buyers who
leave the losers’ pool over T periods, then, is at least

α
(
n
[
1− (1− γ△)T

]
− J − 1

)
:

the returning losers, minus the J + 1 spots available as high bidders in open auctions (J auctions
are open at a time, and at most one new auction can open up over T periods), times the probability
of exit α.

The expected number of buyers entering the losers’ pool over T periods is at most (λ+ J) (1− α):
the expected number of new bidders arriving, plus the J high bidders at period t, times the proba-
bility 1− α that a losing bidder enters the losers’ pool rather than exiting. Thus, whenever

n(t) >
(λ) (1− α) + J

α
[
1− (1− γ△)T

] ,
n is falling on average over the next T periods. Pick an

n∗ >
(λ) (1− α) + J

α
[
1− (1− γ△)T

] ,
and it follows from the law of large numbers that any n > n∗ will reach a state less than or equal to
n∗ with probability 1.

Starting from any state ω0 ∈ Ω(d) such that n ≤ n∗, the probability of reaching (0,∅,0,0, d) is
bounded below by L (n∗), defined as follows: the probability (γ∆α)n

∗
that n∗ losers enter in the

current period and exit if they do not win an auction, times the probability
(
e−λ∆

)JT
= e−λJ that

no new bidders enter over the next JT periods until all the current auctions close and the state hits
2A state ω leads to state ω′ if the probability of reaching ω′ from ω is strictly positive. Two states communicate if

each leads to the other.
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d again.

Thus, the process reaches (0,∅,0,0, d) with probability 1: the set of states satisfying n ≤ n∗ is
reached infinitely often, and the probability of reaching (0,∅,0,0, d) from any state in that set is
bounded below by L (n∗) > 0.

Lemma B.1 implies that the unique absorbing communicating class of Φ(σ, d), ΩC(σ, d), is the set
of states that communicate with (0,∅,0,0, d).

Define the Markov process ΦC(σ, d) with state space ΩC(σ, d) as having the same transition prob-
abilities as Φ(σ, d), restricted to ΩC(σ, d). As constructed, ΦC(σ, d) is irreducible and recurrent.
It therefore has a unique invariant distribution π(σ, d). And because the empty state (0,∅,0,0, d)
follows itself under P T (σ) with probability at least

(
e−λ∆

)T
= e−λ (the probability that no new

buyers enter over the next T periods until the state hits d again), ΦC(σ, d) is aperiodic.

Because ΦC(σ, d) is aperiodic with a unique invariant distribution, it is ergodic. Lemma B.1 then
immediately implies that Φ(σ, d) is ergodic as well, with the same invariant distribution.

C Proof of Proposition 1

The proof mirrors Kreps and Wilson’s (1982) existence result for sequential equilibrium, which in
turn relies on Selten’s (1975) result for extensive form trembling hand perfect equilibrium. The idea
is that the limit of Nash equilibria of a sequence of perturbed games where each action must be
played with positive probability is an equilibrium in our setting.

For any small ϵ > 0, define the ϵ-perturbed game Γϵ as our model with the restriction that each type
of buyer must choose each possible action with probability at least ϵ at every observable state. It is
straightforward to show that a Nash equilibrium of Γϵ exists using Kakutani’s fixed point theorem:
a pure strategy is a function from the finite set X × Ω̄ to the finite set {1, . . . , J} × B, so the set
of mixed strategies satisfying the ϵ restriction is a compact, convex subset of a finite dimensional
simplex. Expression (1) is continuous in the strategies of other players σ and conditional beliefs
p, so the best response correspondence is upper hemicontinuous in σ and p. Given a full-support
strategy σ, every observable state ω̃ is on the long-run path, so all conditional beliefs π(σ, ω̃) are
pinned down by Bayes’ rule. Those conditional beliefs are continuous in σ, because for each d the
stationary distribution π(σ, d) is continuous in σ. Thus, the mapping from σ to best responses is
upper hemicontinuous, and Kakutani’s fixed point theorem applies.

Then take a sequence {ϵn} of ϵn > 0 converging to 0, and a sequence {σ∗
n} of Nash equilibria

of Γϵn . The set of strategy profiles is compact, so without loss of generality assume that {σ∗
n}
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converges to a limit σ∗. As noted above, conditional beliefs are continuous in σ, so the sequence
of conditional beliefs {π(σ∗

n, ω̃)} also has a limit; call it p∗. We want to show that (σ∗, p∗) is an
equilibrium. First, the upper hemicontinuity of the best response correspondence ensures that σ∗ is
a best response to (σ∗, p∗). Similarly, to establish that p∗ is consistent with σ∗, it is enough to show
that the set of conditional belief systems consistent with a strategy profile σ is upper hemicontinuous
in σ.

That argument is straightforward: for any strategy profile σ and conditional belief system p, take
a sequence {σn, pn} such that (i) σn → σ, (ii) pn → p, and (iii) for each n, pn is consistent with
σn. We want to show that p is consistent with σ. By definition, for each n there exists a sequence
of full-support strategies {σn,k}k such that as k → ∞, σn,k → σn and π(σn,k, ω̃) → pn(ω̃) for
every observable state ω̃ ∈ Ω̃. Define the sequence {σ′

k, p
′
k} by σ′

k = σk,k and p′k = pk,k. By
construction, σ′

k → σ and π(σ′
k, ω̃) → p(ω̃) for every observable state ω̃ ∈ Ω̃, so we conclude that

p is consistent with σ.

Thus, (σ∗, p∗) is an equilibrium.

D Weakly dominant bidding

Here we prove the claim in Section 3.2 that if a type-x buyer’s expected re-entry payoff V (x;σ, p)

is independent of the losing state, then the bid b(x) = x− (1− α)V (x;σ, p) is weakly dominant.

Proposition D.1 Suppose that the expected re-entry payoff for a type-x buyer is V (x;σ, p), regard-
less of the losing state ωl. Then the following bid is weakly dominant for type-x buyer given any
strategy profile and conditional beliefs (σ, p):

b(x) = x− (1− α)V (x;σ, p).

Proof. For now, suppose that b(x) is a feasible bid; that is, that b(x) ∈ B. Because the bid that
a buyer submits in an auction may influence the actions of future bidders who arrive before the
auction closes, the argument that b(x) is weakly dominant is slightly more complicated than in the
case of a static second price auction. The key observation is that a buyer’s bid b can affect future
bidders’ behavior only through the observable state. Because only the second highest current bid r

is visible, b is observed only when the highest competitor’s bid exceeds b.

Suppose that the buyer submits a bid in period t in an auction that will close after d more periods.
For s ∈ {t, . . . , t+ d}, let Xs denote the highest competitor’s bid in the auction up through period
s. Let {xt, . . . , xt+d} denote the realized increasing sequence of highest competing bids if the buyer
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submits a bid of b(x). If the buyer submits a bid of b(x) and xt+d > b(x), then the buyer loses the
auction and gets expected continuation payoff (1 − α)V (x;σ, p). If xt+d < b(x), then the buyer
wins the auction, pays xt+d, and gets payoff x − xt+d > x − b(x) = (1 − α)V (x;σ, p). And if
xt+d = b(x), then depending on timing and tie-breaking, the buyer either loses the auction and gets
continuation payoff (1 − α)V (x;σ, p), or wins the auction, pays xs+d, and gets the same payoff:
x− xt+d = x− b(x) = (1− α)V (x;σ, p).

Next consider a bid b > b(x). There are three cases. If xt+d < b(x), then the outcome is the
same as with a bid of b(x): the buyer wins the auction, pays xt+d, and gets payoff x − xt+d.
If xt+d = b(x), then again both bids give the same payoff: with a bid of b, the buyer wins and
gets payoff x − b(x) = (1 − α)V (x;σ, p). A bid of b(x) may win or lose, but the payoff is
x− b(x) = (1− α)V (x;σ, p) either way. Otherwise (if xt+d > b(x)), let

s ≡ min {s ∈ {t, . . . , t+ d} |xs > b(x)} ,

and let
{
xt, . . . , xs, x

′
s+1, . . . , x

′
t+d

}
denote the realized increasing sequence of highest competing

bids if the buyer submits a bid of b. (Note that the sequence is the same as under b(x) up until the first
period that a competing bid strictly exceeds b(x); up until then the observable second highest bid is
the same.) In this case, a bid of b(x) loses, and the buyer gets continuation payoff (1−α)V (x;σ, p).
A bid of b gives a weakly lower payoff: if x

′
t+d > b, the buyer loses and gets (1− α)V (x;σ, p). If

x
′
t+d ∈ (b(x), b), then the buyer wins and gets payoff x − x

′
t+d < x − b(x) = (1 − α)V (x;σ, p).

Finally, if x
′
t+d = b, then the buyer may either lose and get payoff (1−α)V (x;σ, p) or win and get

payoff x − x
′
t+d = x − b < (1 − α)V (x;σ, p). Thus, bidding b(x) always gives a weakly higher

payoff than bidding b > b(x) and sometimes a strictly higher payoff.

Finally, consider a bid b < b(x). If xt+d < b, then the outcome is the same as with a bid of b(x):
the buyer wins the auction, pays xt+d, and gets payoff x − xt+d. Otherwise, bidding b(x) gives a
weakly higher payoff than bidding b. If xt+d = b, then by submitting b(x) the buyer wins, pays b,
and gets payoff x − b > x − b(x) = (1 − α)V (x;σ, p). With a bid of b, the buyer may win and
get payoff x− b, but also may lose and get only the continuation payoff (1−α)V (x;σ, p). Finally,
if xt+d > b, then a bid of b loses, and the buyer gets continuation payoff (1 − α)V (x;σ, p). A
bid of b(x) gives a weakly higher payoff: if xt+d ∈ (b, b(x)), then the buyer wins and gets payoff
x− xt+d > x− b(x) = (1− α)V (x;σ, p). If xt+d ≥ b(x), then win or lose a bid of b(x) gives the
buyer a payoff of (1 − α)V (x;σ, p). Thus, bidding b(x) always gives a weakly higher payoff than
bidding b < b(x) and sometimes a strictly higher payoff.

The arguments above generalize to show that for any bids b′′, b′ ∈ B such that either b′′ > b′ ≥ b(x)

or b(x) ≥ b′ > b′′, bidding b′ weakly dominates bidding b′′. Thus, if bidding exactly b(x) is not
feasible – that is, if b(x) /∈ B – then any bids other than the closest feasible bids just below and
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above b(x) are weakly dominated.

E Proof of part (ii) of Theorem 1

To complete the proof of Theorem 1, we need to show that condition (ii) is satisfied; that is, that
x−(1− α) v∗M,Jk

(x) is increasing in x. It is sufficient to show that for high enough k, the derivative
of v∗M,Jk

(x) is less than 1/ (1− α); more precisely, that for types y > x, v∗M,Jk
(y)− v∗M,Jk

(x) <

(y − x) / (1− α).

The argument is standard. A buyer’s expected payoff in the dynamic game equals his type times the
probability that he eventually wins an auction, minus the expected price that he pays conditional on
winning. Let qk(x) denote the steady-state probability that a buyer who plays the strategy σ∗

M,Jk
(x)

(that is, the strategy of a type-x buyer) eventually wins an auction, given that all other buyers play
according to σ∗

M,Jk
. Similarly, let tk(x) denote the expected payment of such a buyer. Note that

neither qk (·) nor tk (·) depends on the buyer’s type – they depend only on his strategy.

Using that notation, we can write

v∗M,Jk
(x) = x · qk(x)− tk(x).

Let ϵ̄ ≡ min {|x′′ − x′| : x′, x′′ ∈ X}, and pick an ϵ′ ∈
(
0, α

1−α ϵ̄
)

. Because for high enough k

playing according to σ∗
M,Jk

is an ϵ′-best response for all types, we have that

v∗M,Jk
(x) = x · qk(x)− tk(x)

≥ x · qk(y)− tk(y)− ϵ′

= [x− y] · qk(y) + y · qk(y)− tk(y)− ϵ′

= [x− y] · qk(y) + v∗M,Jk
(y)− ϵ′.

Because qk (·) ≤ 1, we get v∗M,Jk
(y) − v∗M,Jk

(x) ≤ y − x + ϵ′. Because ϵ′ < α
1−α ϵ̄, we conclude

that v∗M,Jk
(y)− v∗M,Jk

(x) < (y − x) / (1− α), as desired.

F Equilibrium with sealed-bid auctions

Here we prove that when the platform provides no information about the state of bidding, there is
an epsilon equilibrium in which buyers always bid in the soonest-to-close auction.3

3Under the assumption that buyers use stationary strategies, the outcome is in fact an exact equilibrium. That as-
sumption, though, is very restrictive in a sealed bid environment where the only public information is the auction closing
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Proposition F.1 Suppose the auctions are sealed bid auctions. Pick any ϵ > 0. Fix a sequence
{γk, Jk}∞k=1 such that limk→∞γk = 0 and γkJk is constant. Then there exists a sequence of ϵ-
equilibria {(σ∗

k, p
∗
k)}∞k=1 such that for high enough k, each type of bidder x always chooses the

soonest-to-close auction upon arrival and submits a bid equal to b∗(x) = x− (1−α)V (x;σ∗, p∗),
where

V (x;σ∗, p∗) =

∑
m∈{0,..,b∗}

(x−m)gσ∗,p∗(m)

[1− (1− α)(1−Gσ∗,p∗(m))]
.

F.1 Sealed Bid Counterfactual

We simulate equilibrium outcomes for a sequence of 10,000 auctions,4. Each period is an auction,
and the number of new buyers arriving before each auction being a draw from the Poisson distribu-
tion with estimated mean λ̂ = 5.47. Their valuations are drawn randomly from the estimated FE .
Similarly, the number of returning buyers in each auction is a random draw from a Poisson distri-
bution with estimated mean of γ̂n = 4.68. Their valuations are drawn random from the loser pool.
When a buyer arrives, she is assigned to the soonest-to-close auction. Losing bidders in each auction
exit with probability α̂ = 0.502, and otherwise enter a pool of losers, which evolves stochastically
over the sequence.5 Table F.1 compares the simulation outcomes to the data outcomes. The sealed
bid auction significantly reduces price dispersion and increases efficiency relative to the outcome in
the data. With buyers randomly matched to auctions, but participating dynamically, 72 percent of
the highest-value buyers successfully win an auction, as opposed to the 59 percent from the data.

Table F.1: Prices and efficiency compared to counterfactual benchmark

Endogenous matching Random matching
(i.e., data) (simulation)

Avg. price 275.39 274.02
SD of prices 26.85 16.65
Pr(win |x > P ∗) .594 0.717

The simulation provides further evidence on how the matching in the data differs from random

times. The proposition holds if we drop that assumption and allow buyers to condition on their private history, and it
holds regardless of what information about outcomes the platform releases when an auction closes.

4To get 10,000 auctions, we simulate 30,000 and then drop the first and last 10,000. We drop the first 10,000 to ensure
that we are sampling from auctions in steady state; we drop the last 10,000 auctions because for late-arriving buyers we
cannot observe their eventual outcomes (e.g., whether they eventually succeed in winning an auction). At the start of the
simulated sequence, we seed the loser pool with k̄ = λ̂(1− α)/(αβ̂) buyers whose valuations are drawn from FE .

5At the start of the simulated sequence, we seed the loser pool with n = λ̂(1 − α̂)/(α̂γ̂) ≈ 600 buyers whose
valuations are drawn from FE .
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Table F.2: Price distributions: data vs. random matching

% of auctions Average prices Std. deviations
# of bidders Data RM∗ Data RM Data RM
0-3 12.61 18.56 269.71 268.15 32.11 20.96
4-6 18.17 70.52 274.92 275.03 28.02 15.43
7-9 16.79 10.74 275.13 280.31 27.09 13.91
10-12 16.75 0.18 276.37 283.20 26.15 6.71
13+ 35.67 0.00 277.29 – 24.00 –
∗ RM represents a simulation with random matching of bidders to auctions, with
censoring of bidders who are outbid before their turn (so the table reports the number of
bidders whose bids would have been observed).

matching. Table F.2 compares the variation of the price distributions in the number of bidders. In

the random matching simulation, the average price increases with the number of observed bidders,

and the standard deviation decreases. By contrast, in the data, average prices are fairly flat with

respect to the number of bidders, and the standard deviation declines much less sharply that it

would under random matching.

G Endogenous exit

Suppose losing buyers find it costly to stay in the market and bid again. The cost is denoted by c,

and it is randomly drawn from a distribution FC with support [0, c]. The buyer draws the cost after

she bids and loses, and it is independently distributed across a buyer’s losses. The probability that a

buyer with type x exits is then given by

Pr{c > V (x; ρ)} ≡ 1− FC(V (x; ρ)),

and the optimal bid function is

σ(x) = x− FC(V (x; ρ))V (x; ρ).

The ex ante value function is given by the function
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V (x) =

∫ σ(x)
0 (x−m)dGM |B(m|σ(x))

[1− FC(V (x; ρ))(1−GM |B(σ(x)|σ(x))]
.

Therefore, given GM |B, FC and x, we have three equations to solve for three unknowns: the bid

b = σ(x), the continuation value v = V (x; ρ), and the exit probability α = 1 − FC(v). FC is not

known, but it can be identified from the data. To see why, note that we can use the transformation

x = η(b) and express the above three equations in bid space. The probability of exit becomes

α(b) = 1− FC(V (η(b); ρ)).

The inverse bid function is

η(b) = b+ (1− α(b))V (η(b); ρ),

and the value equation becomes

V (η(b); ρ) =

∫ b
0 (η(b)−m)dGM |B(m|b)

[1− (1− α(b))(1−GM |B(b|b))]
.

Substituting V (η(b)) into the inverse bid function, we obtain

η(b) = b+
(1− α(b))

α(b)
GM |B(b|b)[b− E(M |M < b, b)].

Once again, estimates of the private values can be obtained directly from data on bids and exits.

Thus, FE (and FL) are identified. To identify FC , we solve v(b) = V (η(b); ρ) for each bid b and

then plot α(b) against v(b) to determine the distribution FC .
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H Additional tables and figures

Table H.1 shows how the number of bidders per auction varies across times of day.

Table H.1: Bidders per auction closing, by time of day

Percentiles
Time block Mean Std. Dev. 0.10 0.50 0.90
00:00-06:00 8.31 6.13 0 8 18
06:00-12:00 9.23 6.40 0 9 18
12:00-18:00 9.40 6.43 1 9 18
18:00-24:00 9.29 6.41 1 9 18

Figure H.1 shows the distributions of times between bids, across all bidders and auctions, compared

to the exponential distribution.

Figure H.1: Time between bids
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Figure H.2 shows binned exit frequencies as a function of the submitted bid b, along with a semi-

nonparametric estimate of the exit rate α(b).

Figure H.3 shows the distribution of the number of bidder arrivals per hour, which in our model is

assumed to be Poisson.

Figure H.4 plots the evolution of the number of available items in our posted-price simulation.
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Figure H.2: Exit rate as a function of bid
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Figure H.3: Bidder arrivals per hour
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I Computing bids in counterfactual simulations

An equilibrium of our model consists of a bid function σ(x) and a distribution of the maximum rival

bid GM |B such that σ(x) is optimal given bidders’ beliefs, and GM |B is the stationary distribution

generated when bidders bid according to σ(x). Formally, an equilibrium must satisfy

σ(x) = x− (1− α)V (x) (I.1)
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Figure H.4: Evolution of the number of available items
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and

V (x) =

∫ σ(x)
0 (x− p)dGM |B(p|σ(x))[

1− (1− α)(1−GM |B(σ(x)|σ(x)))
] (I.2)

When the state of the market is a stationary process, GM |B(σ(x)|σ(x)) can be computed as the aver-

age probability that a buyer of type x wins. As long as the bid function is monotone, this probability

does not depend on the bids, so we can find an equilibrium by first simulating a large number of

auctions to compute GM |B(σ(x)|σ(x)), and then numerically solving for the value function V (x)

that satisfies conditions (I.1) and (I.2). The latter step is a search for a fixed point in function space,

and can be accomplished with a simple iterative procedure. We set V (x) equal to zero initially, so

that σ(x) = x, and then compute the surplus that the simulated bidders would have earned in that

case. This computed surplus becomes the new estimate of V (x), and the bids are updated accord-

ing to (I.1). Surplus is then recomputed for all bidders, and the process is iterated until the newest

estimate of V (x) is unchanged relative to the previous one.

In each simulated auction, we compute the winner’s surplus as x− p, setting p = y − (1− α)V (y)

where y is the type of the second-highest bidder. To get lifetime surplus (the full continuation

value), we scale this result by 1/
[
1− (1− α)(1−GM |B(σ(x)|σ(x)))

]
. Using the data from the
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simulated auctions, we estimate GM |B(σ(x)|σ(x)) with a local polynomial regression of the win

dummy on x.

J Auction selection

For each buyer in our data, we constructed a choice set consisting of the thirty soonest-to-close auc-

tions in which the posted bid was less than the buyer’s eventual bid—i.e., the thirty soonest-to-close

auctions in which the bid she submitted would have been an allowable bid. Using these choice

sets, we then estimated a multinomial logit model in which the only explanatory variable was the

rank of the auction (by soonest to close), allowing for 10 different coefficients corresponding to

the 10 deciles of the submitted bid. In other words, high bidders were allowed to have different

preferences than low bidders for bidding in soon-to-close auctions. The magnitudes of the coef-

ficients were monotonically decreasing in the decile: the highest-value bidders were significantly

more likely to choose soon-to-close auctions. Figure J.1 shows the predicted probabilities for the

highest, lowest, and middle-decile bidders. Interestingly, the selection probabilities are much less

skewed for low value buyers — they are essentially randomizing over the set of auctions in their

choice set. This may reflect the fact that posted bids in auctions with later closing times are not very

informative of expected payoffs.6
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Figure J.1: Auction selection probabilities for high vs. low bidders
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